Задание 23 из ОГЭ по математике: задача 64
Даны две параллельные прямые. На первой прямой взят отрезок AB, на второй – CD. Точка O – точка пересечения отрезков AD и BC. Известно, что AB=10, CD=20, AD=30. Найдите OD.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.
Биссектрисы углов $K$ и $L$ параллелограмма $KLMN$ пересекаются в точке $P$. Найдите площадь параллелограмма, если $LM=20$, а расстояние от точки $P$ до стороны $KL$ равно $7$.
В равнобедренном треугольнике $ABC$ проведена медиана $BH$ к основанию $AC$, а в треугольнике $BHC$ — медиана $HT$ к стороне $BC$. Найдите $HT$, если $AC=42$ и $BH=20$.