Задание 23 из ОГЭ по математике: задача 63

Разбор сложных заданий в тг-канале:

Даны две параллельные прямые. На первой прямой взят отрезок AB, на второй – CD. Точка O – точка пересечения отрезков AD и BC. Известно, что AB=18, CD=54, AD=36. Найдите AO.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.

На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.

Периметр параллелограмма $ABCD$, описанного около окружности, равен $40$. Найдите стороны этого параллелограмма.

Расстояние от точки $M$, являющейся серединой гипотенузы $AC$ прямоугольного треугольника $ABC$, до катета $BC$ равно $6$. Найдите острые углы треугольника, если его гипотенуза равна $24$. Отв…

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!