Задание 23 из ОГЭ по математике: задача 14
Углы $A$ и $D$ треугольника $ABD$ равны соответственно $64^°$ и $86^°$. Найдите $AD$, если радиус окружности, описанной около треугольника $ABD$, равен $5$
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Расстояние от точки $O$, являющейся серединой основания $AC$ равнобедренного треугольника $ABC$, до стороны $BC$ равно $14$. Найдите углы треугольника, если его основание равно $56$. Ответ дай…
Прямая, параллельная основаниям трапеции $MNPK$, пересекает её боковые стороны $MN$ и $PK$ в точках $A$ и $B$ соответственно. Найдите длину отрезка $AB$, если $NP = 15$, $MK = 24$, $PB$ : $BK$ = $5$ : $4$.…
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.