Задание 23 из ОГЭ по математике: задача 15

Разбор сложных заданий в тг-канале:

Отрезки $AC$ и $BD$ являются хордами окружности. Найдите длину хорды $AC$, если $BD = 42$, а расстояния от центра окружности до хорд $AC$ и $BD$ равны соответственно $21$ и $20$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В прямоугольник $ABCD$, одна из сторон которого равна $8$, вписана окружность. Найдите периметр этого прямоугольника.

В $△ABC$ стороны $AC$, $AB$ и $BC$ равны $10$, $7$ и $5$ соответственно. Точка $D$ расположена вне треугольника $ABC$, причём отрезок $CD$ пересекает сторону $AB$ в точке, отличной от $B$. Известно, что т…

Сумма боковых сторон трапеции, в которую вписана окружность, равна $18$. Найдите среднюю линию трапеции.

Треугольник вписан в окружность, при чем его вершины делят ее на три дуги, которые относятся как 10:28:22. Найдите радиус описанной около этого треугольника окружности, если меньша…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!