Задание 23 из ОГЭ по математике: задача 15

Разбор сложных заданий в тг-канале:

Отрезки $AC$ и $BD$ являются хордами окружности. Найдите длину хорды $AC$, если $BD = 42$, а расстояния от центра окружности до хорд $AC$ и $BD$ равны соответственно $21$ и $20$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите угол $ACO$, если его сторона $AC$ касается окружности с центром в точке $O$, а дуга $AB$, заключённая внутри этого угла, равна $150^°$ (см. рис.).

Высота AH ромба ABCD делит сторону CD на отрезки DH =24 и CH = 2. Найдите высоту ромба.

В прямоугольник $ABCD$, одна из сторон которого равна $8$, вписана окружность. Найдите периметр этого прямоугольника.

Сумма боковых сторон трапеции, в которую вписана окружность, равна $18$. Найдите среднюю линию трапеции.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!