Задание 23 из ОГЭ по математике: задача 16
Отрезки $AC$ и $BD$ являются хордами окружности. Найдите длину хорды $BD$, если $AC = 24$, а расстояния от центра окружности до хорд $AC$ и $BD$ равны соответственно $35$ и $12$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В прямоугольник $ABCD$, одна из сторон которого равна $8$, вписана окружность. Найдите периметр этого прямоугольника.
Сумма боковых сторон трапеции, в которую вписана окружность, равна $18$. Найдите среднюю линию трапеции.
Точка $M$ является основанием высоты, проведённой из вершины прямого угла $C$ треугольника $ABC$ к гипотенузе $AB$. Найдите $AC$, если $AM = 4$, $AB = 16$.