Задание 23 из ОГЭ по математике: задача 8

Разбор сложных заданий в тг-канале:

Отрезки $AC$ и $BD$ являются хордами окружности. Найдите длину хорды $BD$, если $AC = 24$, а расстояния от центра окружности до хорд $AC$ и $BD$ равны соответственно $35$ и $12$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Окружность с центром на стороне $AC$ треугольника $ABC$ проходит через вершину $A$ и касается прямой $BC$ в точке $B$. Найдите диаметр окружности, если $BC = 18$, $AC = 24$.

Угол $BCA$ прямоугольного треугольника $ABC$ с прямым углом $B$ равен $30^°$. Найдите расстояние от точки $M$, являющейся серединой гипотенузы, до катета $BC$, если гипотенуза равна $18$.

Сумма боковых сторон трапеции, в которую вписана окружность, равна $18$. Найдите среднюю линию трапеции.

На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!