Задание 23 из ОГЭ по математике: задача 16

Разбор сложных заданий в тг-канале:

Отрезки $AC$ и $BD$ являются хордами окружности. Найдите длину хорды $BD$, если $AC = 24$, а расстояния от центра окружности до хорд $AC$ и $BD$ равны соответственно $35$ и $12$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В прямоугольник $ABCD$, одна из сторон которого равна $8$, вписана окружность. Найдите периметр этого прямоугольника.

Сумма боковых сторон трапеции, в которую вписана окружность, равна $18$. Найдите среднюю линию трапеции.

Точка $M$ является основанием высоты, проведённой из вершины прямого угла $C$ треугольника $ABC$ к гипотенузе $AB$. Найдите $AC$, если $AM = 4$, $AB = 16$.

Найдите угол $ACO$, если его сторона $AC$ касается окружности с центром в точке $O$, а дуга $AB$, заключённая внутри этого угла, равна $150^°$ (см. рис.).

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!