Задание 23 из ОГЭ по математике: задача 106
Биссектрисы углов $A$ и $B$ параллелограмма $ABCD$ пересекаются в точке $M$. Найдите площадь параллелограмма, если $BC=15$, а расстояние от точки $M$ до стороны $AB$ равно $6$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.
Отрезки $AB$ и $CD$ лежат на двух параллельных прямых, $AB=15$ и $CD=25$. Отрезки $AC$ и $BD$ пересекаются в точке $M$. Найдите $MC$, если $AC=120$.