Задание 23 из ОГЭ по математике: задача 10

Разбор сложных заданий в тг-канале:

Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как $1$ : $2$ : $3$. Найдите радиус окружности, если меньшая из сторон равна $14$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Точка $H$ является основанием высоты $BH$, опущенной из вершины прямого угла $B$ треугольника $ABC$ к гипотенузе $AC$. Найдите $AC$, если $AB=18$ и $AH=8$.

Медиана $AK$ и биссектриса $BD$ треугольника $ABC$ пересекаются в точке $N$, длина стороны $BC$ относится к длине стороны $AB$, как $4 : 5$. Найдите отношение площади треугольника $BNK$ к площади …

Дан треугольник АВС, в котором прямая PQ пересекает стороны АВ и ВС в точках P и Q соответственно. Известно, что BP=15, AB=CQ=20, BQ=10, AC=38. Найдите PQ.

Дан треугольник АВС, в котором прямая PQ пересекает стороны АВ и ВС в точках P и Q соответственно. Известно, что AP=3,5, AB=CQ=14, BC в 6 раза больше AP, AC=18. Найдите PQ.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!