Задание 23 из ОГЭ по математике: задача 57

Разбор сложных заданий в тг-канале:

Треугольник вписан в окружность, при чем его вершины делят ее на три дуги, которые относятся как 4:12:8. Найдите радиус описанной около этого треугольника окружности, если меньшая сторона треугольника равна 16.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.

Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как $1$ : $2$ : $3$. Найдите радиус окружности, если меньшая из сторон равна $14$.

В прямоугольном треугольнике АВС с прямым углом С к гипотенузе АВ проведена высота СН. Найдите BC, если AB=16,2, BH=5.

Даны две параллельные прямые. На первой прямой взят отрезок AB, на второй – CD. Точка O – точка пересечения отрезков AD и BC. Известно, что AB=15, CD=75, AD=30. Найдите OD.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!