Задание 23 из ОГЭ по математике: задача 49
Треугольник вписан в окружность, при чем его вершины делят ее на три дуги, которые относятся как 4:12:8. Найдите радиус описанной около этого треугольника окружности, если меньшая сторона треугольника равна 16.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Окружность с центром на стороне $MN$ треугольника $MNP$ проходит через вершину $N$ и касается прямой $MP$ в точке $P$ . Найдите диаметр окружности, если $MP = 16$, $MN = 20$.
Высота $CH$ ромба $ABCD$, опущенная из точки $C$ на сторону $AB$, делит сторону $AB$ на отрезки $AH$ и $HB$. Найдите $AH$, если $CH=8$ и $HB=15$.
Диагонали $MP$ и $NK$ трапеции $MNPK$ пересекаются в точке $A$ ($MK$ и $NP$ — основания трапеции). Площади треугольников $MAK$ и $NAP$ равны соответственно $25$ $см^2$ и $9$ $см^2$. Найдите площадь трапец…