Задание 23 из ОГЭ по математике: задача 49
Треугольник вписан в окружность, при чем его вершины делят ее на три дуги, которые относятся как 4:12:8. Найдите радиус описанной около этого треугольника окружности, если меньшая сторона треугольника равна 16.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В $△ABC$ стороны $AC$, $AB$ и $BC$ равны $10$, $7$ и $5$ соответственно. Точка $D$ расположена вне треугольника $ABC$, причём отрезок $CD$ пересекает сторону $AB$ в точке, отличной от $B$. Известно, что т…
Диагонали $MP$ и $NK$ трапеции $MNPK$ пересекаются в точке $A$ ($MK$ и $NP$ — основания трапеции). Площади треугольников $MAK$ и $NAP$ равны соответственно $25$ $см^2$ и $9$ $см^2$. Найдите площадь трапец…
Медиана $BD$ и биссектриса $CK$ треугольника $ABC$ пересекаются в точке $M$, длина стороны $AC$ относится к длине стороны $BC$ как $3 : 4$. Найдите отношение площади треугольника $CMD$ к площади т…