Задание 23 из ОГЭ по математике: задача 50
Треугольник вписан в окружность, при чем его вершины делят ее на три дуги, которые относятся как 32:20:68. Найдите радиус описанной около этого треугольника окружности, если меньшая сторона треугольника равна 14.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Диагонали $MP$ и $NK$ трапеции $MNPK$ пересекаются в точке $A$ ($MK$ и $NP$ — основания трапеции). Площади треугольников $MAK$ и $NAP$ равны соответственно $25$ $см^2$ и $9$ $см^2$. Найдите площадь трапец…
Одна сторона $AB$ треугольника $ABC$ касается окружности в точке $B$. Другая сторона $AC$ проходит через центр $O$ окружности и пересекает окружность в точках $D$ и $C$ так, что $D$ лежит между $A$ …
В равнобедренном треугольнике $ABC$ проведена медиана $BH$ к основанию $AC$, а в треугольнике $BHC$ — медиана $HT$ к стороне $BC$. Найдите $BH$, если $AC=24$ и $HT=6{,}5$.