Задание 23 из ОГЭ по математике: задача 50
Треугольник вписан в окружность, при чем его вершины делят ее на три дуги, которые относятся как 32:20:68. Найдите радиус описанной около этого треугольника окружности, если меньшая сторона треугольника равна 14.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Дан треугольник АВС, в котором прямая PQ пересекает стороны АВ и ВС в точках P и Q соответственно. Известно, что BP=3, AB=20, CQ=4, BC=10, AC=24. Найдите PQ.
Отрезки $AB$ и $CD$ лежат на двух параллельных прямых, $AB=15$ и $CD=25$. Отрезки $AC$ и $BD$ пересекаются в точке $M$. Найдите $MC$, если $AC=120$.
Диагонали $MP$ и $NK$ трапеции $MNPK$ пересекаются в точке $A$ ($MK$ и $NP$ — основания трапеции). Площади треугольников $MAK$ и $NAP$ равны соответственно $25$ $см^2$ и $9$ $см^2$. Найдите площадь трапец…