Задание 23 из ОГЭ по математике: задача 16
Диагонали $MP$ и $NK$ трапеции $MNPK$ пересекаются в точке $A$ ($MK$ и $NP$ — основания трапеции). Площади треугольников $MAK$ и $NAP$ равны соответственно $25$ $см^2$ и $9$ $см^2$. Найдите площадь трапеции.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Прямая, параллельная основаниям трапеции $MNPK$, пересекает её боковые стороны $MN$ и $PK$ в точках $A$ и $B$ соответственно. Найдите длину отрезка $AB$, если $NP = 15$, $MK = 24$, $PB$ : $BK$ = $5$ : $4$.…
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.
Отрезки $AD$ и $BC$ лежат на параллельных прямых, а отрезки $AB$ и $CD$ пересекаются в точке $M$. Найдите $AB$, если $AD = 12$, $BC = 15$, $MB = 7$