Задание 23 из ОГЭ по математике: задача 94
Биссектрисы углов при основании $AC$ равнобедренного треугольника $ABC$ пересекаются в точке $M$. Отрезок $EF$, концы которого $E$ и $F$ лежат соответственно на сторонах $AB$ и $BC$, проходит через точку $M$ и параллелен $AC$. Найдите $EF$, если $AE=24$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Расстояние $OH$ от точки пересечения $O$ диагоналей ромба $ABCD$ до стороны $BC$ равно $14√ 2$. Найдите наименьшее расстояние между двумя точками, лежащими на различных диагоналях ромба, в к…
Средняя линия трапеции, в которую вписана окружность, равна $10$. Найдите сумму боковых сторон трапеции.
Длины дуг, на которые вершины треугольника $ABC$ делят описанную около него окружность, относятся как $4:9:11$. Найдите меньшую сторону, если радиус $R$ этой окружности равен $14$.