Задание 23 из ОГЭ по математике: задача 94

Разбор сложных заданий в тг-канале:

Биссектрисы углов при основании $AC$ равнобедренного треугольника $ABC$ пересекаются в точке $M$. Отрезок $EF$, концы которого $E$ и $F$ лежат соответственно на сторонах $AB$ и $BC$, проходит через точку $M$ и параллелен $AC$. Найдите $EF$, если $AE=24$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.

Расстояние $OH$ от точки пересечения $O$ диагоналей ромба $ABCD$ до стороны $BC$ равно $14√ 2$. Найдите наименьшее расстояние между двумя точками, лежащими на различных диагоналях ромба, в к…

Отрезки $AC$ и $BD$ являются хордами окружности. Найдите длину хорды $BD$, если $AC = 24$, а расстояния от центра окружности до хорд $AC$ и $BD$ равны соответственно $35$ и $12$.

Отрезки $AC$ и $BD$ являются хордами окружности. Найдите длину хорды $AC$, если $BD = 42$, а расстояния от центра окружности до хорд $AC$ и $BD$ равны соответственно $21$ и $20$.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!