Задание 23 из ОГЭ по математике: задача 93

Разбор сложных заданий в тг-канале:

В треугольнике $ABC$ через середины $M$ и $N$ сторон $AB$ и $BC$ соответственно проведена прямая. Биссектрисы углов $CAM$ и $NMA$ пересекаются в точке $F$. Найдите $AM$, если $AF=15$ и $FM=8$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.

Точка $K$ является основанием высоты, проведённой из вершины прямого угла $C$ треугольника $ABC$ к гипотенузе $AB$. Найдите $AC$, если $AK = 3$, $AB = 12$.

На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.

Около четырёхугольника $BKPC$ описана окружность. Продолжения противоположных сторон $BK$ и $CP$ этого четырёхугольника пересекаются в точке $A$, лежащей вне окружности. $K$ лежит между $A$ и …

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!