Задание 23 из ОГЭ по математике: задача 93

Разбор сложных заданий в тг-канале:

В треугольнике $ABC$ через середины $M$ и $N$ сторон $AB$ и $BC$ соответственно проведена прямая. Биссектрисы углов $CAM$ и $NMA$ пересекаются в точке $F$. Найдите $AM$, если $AF=15$ и $FM=8$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.

Расстояние $OH$ от точки пересечения $O$ диагоналей ромба $ABCD$ до стороны $BC$ равно $14√ 2$. Найдите наименьшее расстояние между двумя точками, лежащими на различных диагоналях ромба, в к…

На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.

В трапеции ABCD проведены биссектрисы углов A и B при боковой стороне AB, которые пересекаются в точке M. Найдите AB, если AM=5, BM=12.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!