Задание 23 из ОГЭ по математике: задача 93
В треугольнике $ABC$ через середины $M$ и $N$ сторон $AB$ и $BC$ соответственно проведена прямая. Биссектрисы углов $CAM$ и $NMA$ пересекаются в точке $F$. Найдите $AM$, если $AF=15$ и $FM=8$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как $1$ : $2$ : $3$. Найдите радиус окружности, если меньшая из сторон равна $14$.
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.
Биссектрисы углов $A$ и $D$ при основании равнобедренной трапеции $ABCD$ пересекаются в точке $M$, лежащей на основании $BC$. Найдите $AB$, если $BC=38$.