Задание 23 из ОГЭ по математике: задача 93
Длины дуг, на которые вершины треугольника $ABC$ делят описанную около него окружность, относятся как $4:9:11$. Найдите меньшую сторону, если радиус $R$ этой окружности равен $14$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Отрезки $AC$ и $BD$ являются хордами окружности. Найдите длину хорды $AC$, если $BD = 42$, а расстояния от центра окружности до хорд $AC$ и $BD$ равны соответственно $21$ и $20$.
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.
Биссектриса угла $B$ параллелограмма $ABCD$ пересекает его сторону $CD$ в точке $K$. Найдите площадь параллелограмма $ABCD$, если $CK = 8$, $KD = 3$, а $∠BCD = 150^°$.