Задание 23 из ОГЭ по математике: задача 93
Длины дуг, на которые вершины треугольника $ABC$ делят описанную около него окружность, относятся как $4:9:11$. Найдите меньшую сторону, если радиус $R$ этой окружности равен $14$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.
Высота $CH$ ромба $ABCD$, опущенная из точки $C$ на сторону $AB$, делит сторону $AB$ на отрезки $AH$ и $HB$. Найдите $AH$, если $CH=8$ и $HB=15$.
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.