Задание 23 из ОГЭ по математике: задача 85

Разбор сложных заданий в тг-канале:

Длины дуг, на которые вершины треугольника $ABC$ делят описанную около него окружность, относятся как $4:9:11$. Найдите меньшую сторону, если радиус $R$ этой окружности равен $14$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В прямоугольном треугольнике АВС с прямым углом С к гипотенузе АВ проведена высота СН. Найдите BC, если AB=72,25, BH=16.

Радиус вписанной в прямоугольный треугольник окружности равен 1. Найдите его площадь, если гипотенуза данного треугольника равна 9.

На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.

На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!