Задание 23 из ОГЭ по математике: задача 94

Разбор сложных заданий в тг-канале:

Длины дуг, на которые вершины треугольника $ABC$ делят описанную около него окружность, относятся как $12:43:17$. Найдите радиус $R$ этой окружности, если меньшая из сторон треугольника равна $21$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Дан треугольник АВС, в котором прямая PQ пересекает стороны АВ и ВС в точках P и Q соответственно. Известно, что BP=3, AB=20, CQ=4, BC=10, AC=24. Найдите PQ.

Диагонали $MP$ и $NK$ трапеции $MNPK$ пересекаются в точке $A$ ($MK$ и $NP$ — основания трапеции). Площади треугольников $MAK$ и $NAP$ равны соответственно $25$ $см^2$ и $9$ $см^2$. Найдите площадь трапец…

Найдите угол $ACO$, если его сторона $AC$ касается окружности с центром в точке $O$, а дуга $AB$, заключённая внутри этого угла, равна $150^°$ (см. рис.).

Расстояние от точки $O$ пересечения диагоналей $AC$ и $BD$ ромба $ABCD$ до стороны $CD$ равно $11$. Найдите углы ромба, если одна из его диагоналей равна $44$. Ответ дайте в градусах.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!