Задание 23 из ОГЭ по математике: задача 86
Длины дуг, на которые вершины треугольника $ABC$ делят описанную около него окружность, относятся как $12:43:17$. Найдите радиус $R$ этой окружности, если меньшая из сторон треугольника равна $21$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В прямоугольном треугольнике катет и гипотенуза равны соответственно 3 и 5. Найдите высоту, проведенную к гипотенузе.
Отрезки $AD$ и $BC$ лежат на параллельных прямых, а отрезки $AB$ и $CD$ пересекаются в точке $M$. Найдите $AB$, если $AD = 12$, $BC = 15$, $MB = 7$
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.