Задание 23 из ОГЭ по математике: задача 94

Разбор сложных заданий в тг-канале:

Длины дуг, на которые вершины треугольника $ABC$ делят описанную около него окружность, относятся как $12:43:17$. Найдите радиус $R$ этой окружности, если меньшая из сторон треугольника равна $21$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Дан треугольник АВС, в котором прямая PQ пересекает стороны АВ и ВС в точках P и Q соответственно. Известно, что BP=3, AB=20, CQ=4, BC=10, AC=24. Найдите PQ.

Биссектрисы углов при основании $AC$ равнобедренного треугольника $ABC$ пересекаются в точке $M$. Отрезок $EF$, концы которого $E$ и $F$ лежат соответственно на сторонах $AB$ и $BC$, проходит чере…

В трапеции $ABCD$ с боковыми сторонами $AB$ и $CD$ внутренние углы $BAD$ и $CDA$ равны соответственно $45^°$ и $120^°$. Найдите $AB$, если $CD=√ 6$. Ответ дайте в градусах.

Диагонали $MP$ и $NK$ трапеции $MNPK$ пересекаются в точке $A$ ($MK$ и $NP$ — основания трапеции). Площади треугольников $MAK$ и $NAP$ равны соответственно $25$ $см^2$ и $9$ $см^2$. Найдите площадь трапец…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!