Задание 23 из ОГЭ по математике: задача 59

Разбор сложных заданий в тг-канале:

Радиус вписанной в прямоугольный треугольник окружности равен 1. Найдите его площадь, если гипотенуза данного треугольника равна 9.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Биссектрисы углов $A$ и $B$ параллелограмма $ABCD$ пересекаются в точке $M$. Найдите площадь параллелограмма, если $BC=15$, а расстояние от точки $M$ до стороны $AB$ равно $6$.

На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.

Расстояние $OH$ от точки пересечения $O$ диагоналей ромба $ABCD$ до стороны $BC$ равно $14√ 2$. Найдите наименьшее расстояние между двумя точками, лежащими на различных диагоналях ромба, в к…

Треугольник вписан в окружность, при чем его вершины делят ее на три дуги, которые относятся как 10:28:22. Найдите радиус описанной около этого треугольника окружности, если меньша…

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!