Задание 23 из ОГЭ по математике: задача 98

Разбор сложных заданий в тг-канале:

В трапеции $ABCD$ с боковыми сторонами $AB$ и $CD$ внутренние углы $BAD$ и $CDA$ равны соответственно $45^°$ и $120^°$. Найдите $AB$, если $CD=√ 6$. Ответ дайте в градусах.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Даны две параллельные прямые. На первой прямой взят отрезок AB, на второй – CD. Точка O – точка пересечения отрезков AD и BC. Известно, что AB=18, CD=54, AD=36. Найдите AO.

Даны две параллельные прямые. На первой прямой взят отрезок AB, на второй – CD. Точка O – точка пересечения отрезков AD и BC. Известно, что AB=10, CD=20, AD=30. Найдите OD.

Отрезки $AB$ и $CD$ лежат на двух параллельных прямых, $AB=15$ и $CD=25$. Отрезки $AC$ и $BD$ пересекаются в точке $M$. Найдите $MC$, если $AC=120$.

Углы $A$ и $B$ треугольника $ABC$ равны соответственно $63^°$ и $87^°$. Радиус $R$ окружности, описанной около треугольника $ABC$, равен $15$. Найдите $AB$.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!