Задание 23 из ОГЭ по математике: задача 91
Биссектрисы внутренних углов $A$ и $B$ параллелограмма $ABCD$ пересекаются в точке $F$. Найдите $AB$, если $AF=20$ и $BF=21$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Точка $H$ является основанием высоты $BH$, опущенной из вершины прямого угла $B$ треугольника $ABC$ к гипотенузе $AC$. Найдите $AC$, если $AB=18$ и $AH=8$.
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.
Биссектриса угла $C$ параллелограмма $ABCD$ пересекает его сторону $AD$ в точке $F$. Найдите площадь параллелограмма $ABCD$, если $FD = 9$, $AF = 2$, а $∠ADC = 150^°$