Задание 23 из ОГЭ по математике: задача 91
Биссектрисы внутренних углов $A$ и $B$ параллелограмма $ABCD$ пересекаются в точке $F$. Найдите $AB$, если $AF=20$ и $BF=21$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Высота $CH$ ромба $ABCD$, опущенная из точки $C$ на сторону $AB$, делит сторону $AB$ на отрезки $AH$ и $HB$. Найдите $CH$, если $AH=8$ и $HB=21$.
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.
Расстояния от центра $O$ окружности до хорд $AB$ и $CD$ равны соответственно $20$ и $21$. Найдите длину хорды $CD$, если длина хорды $AB$ равна $42$.