Задание 23 из ОГЭ по математике: задача 91
Биссектрисы внутренних углов $A$ и $B$ параллелограмма $ABCD$ пересекаются в точке $F$. Найдите $AB$, если $AF=20$ и $BF=21$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Даны две параллельные прямые. На первой прямой взят отрезок AB, на второй – CD. Точка O – точка пересечения отрезков AD и BC. Известно, что AB=18, CD=54, AD=36. Найдите AO.
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.
Биссектрисы углов $B$ и $C$ параллелограмма $ABCD$ пересекаются в точке, лежащей на стороне $AD$. Найдите $AD$, если $CD = 14,5$.