Задание 23 из ОГЭ по математике: задача 91

Разбор сложных заданий в тг-канале:

Биссектрисы внутренних углов $A$ и $B$ параллелограмма $ABCD$ пересекаются в точке $F$. Найдите $AB$, если $AF=20$ и $BF=21$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Высота $CH$ ромба $ABCD$, опущенная из точки $C$ на сторону $AB$, делит сторону $AB$ на отрезки $AH$ и $HB$. Найдите $CH$, если $AH=8$ и $HB=21$.

На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.

Расстояния от центра $O$ окружности до хорд $AB$ и $CD$ равны соответственно $20$ и $21$. Найдите длину хорды $CD$, если длина хорды $AB$ равна $42$.

На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!