Задание 23 из ОГЭ по математике: задача 13
Биссектриса угла $C$ параллелограмма $ABCD$ пересекает его сторону $AD$ в точке $F$. Найдите площадь параллелограмма $ABCD$, если $FD = 9$, $AF = 2$, а $∠ADC = 150^°$
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В прямоугольном треугольнике катет и гипотенуза равны соответственно 8 и 17. Найдите высоту, проведенную к гипотенузе. В ответ запишите целую часть получившегося числа.
В трапеции $ABCD$ с боковыми сторонами $AB$ и $CD$ внутренние углы $BAD$ и $CDA$ равны соответственно $45^°$ и $120^°$. Найдите $AB$, если $CD=√ 6$. Ответ дайте в градусах.
Окружность, вписанная в ромб $ABCD$, пересекает диагонали ромба в четырёх точках $P$, $Q$, $S$ и $T$. Наименьшее расстояние между двумя этими точками, лежащими на различных диагоналях ромба,…