Задание 23 из ОГЭ по математике: задача 21

Разбор сложных заданий в тг-канале:

Биссектриса угла $C$ параллелограмма $ABCD$ пересекает его сторону $AD$ в точке $F$. Найдите площадь параллелограмма $ABCD$, если $FD = 9$, $AF = 2$, а $∠ADC = 150^°$

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Хорды окружности $AB$ и $CD$ равны соответственно $30$ и $16$. Расстояние от центра окружности $O$ до хорды $CD$ равно $15$. Найдите расстояние от центра окружности $O$ до хорды $AB$.

Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 60° и 135°, а CD = 36. Ответ сократите на $√6 $

Средняя линия трапеции, в которую вписана окружность, равна $10$. Найдите сумму боковых сторон трапеции.

Прямая, параллельная стороне $BC$ треугольника $ABC$, пересекает стороны $AB$ и $AC$ в точках $E$ и $F$ соответственно. Найдите $BC$, если $AE : EB = 2 : 3$ и $EF = 15$.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!