Задание 23 из ОГЭ по математике: задача 12

Разбор сложных заданий в тг-канале:

Прямая, параллельная основаниям трапеции $ABCD$, пересекает её боковые стороны $BC$ и $AD$ в точках $M$ и $N$ соответственно. Найдите длину отрезка $MN$, если $AB = 38$, $CD = 16$, $DN$ : $NA$ = $6$ : $5$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Радиус вписанной в прямоугольный треугольник окружности равен 7. Найдите его площадь, если гипотенуза данного треугольника равна 12.

На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.

Прямая, параллельная стороне $BC$ треугольника $ABC$, пересекает стороны $AB$ и $AC$ в точках $E$ и $F$ соответственно. Найдите $BC$, если $AE : EB = 2 : 3$ и $EF = 15$.

На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!