Задание 23 из ОГЭ по математике: задача 12

Разбор сложных заданий в тг-канале:

Прямая, параллельная основаниям трапеции $ABCD$, пересекает её боковые стороны $BC$ и $AD$ в точках $M$ и $N$ соответственно. Найдите длину отрезка $MN$, если $AB = 38$, $CD = 16$, $DN$ : $NA$ = $6$ : $5$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Высота $BK$ ромба $ABCD$ делит сторону $CD$ на отрезки $CK = 12$ и $KD = 8$. Найдите высоту ромба.

На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.

Отрезки AB и CD – хорды окружности. Найдите длину хорды CD, если известно, что первая AB=126, расстояние от центра окружности до хорды AB равно 16, а до хорды CD равно 25.

На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!