Задание 23 из ОГЭ по математике: задача 12

Разбор сложных заданий в тг-канале:

Прямая, параллельная основаниям трапеции $ABCD$, пересекает её боковые стороны $BC$ и $AD$ в точках $M$ и $N$ соответственно. Найдите длину отрезка $MN$, если $AB = 38$, $CD = 16$, $DN$ : $NA$ = $6$ : $5$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.

Угол $BCA$ прямоугольного треугольника $ABC$ с прямым углом $B$ равен $30^°$. Найдите расстояние от точки $M$, являющейся серединой гипотенузы, до катета $BC$, если гипотенуза равна $18$.

Медиана $BD$ и биссектриса $CK$ треугольника $ABC$ пересекаются в точке $M$, длина стороны $AC$ относится к длине стороны $BC$ как $3 : 4$. Найдите отношение площади треугольника $CMD$ к площади т…

На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!