Задание 23 из ОГЭ по математике: задача 9
Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как $2$ : $3$ : $7$. Найдите радиус окружности, если меньшая из сторон равна $8$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Дан треугольник АВС, в котором прямая PQ пересекает стороны АВ и ВС в точках P и Q соответственно. Известно, что BP=15, AB=CQ=20, BQ=10, AC=38. Найдите PQ.
Биссектрисы внутренних углов $A$ и $B$ параллелограмма $ABCD$ пересекаются в точке $F$. Найдите $AB$, если $AF=20$ и $BF=21$.
Радиус вписанной в прямоугольный треугольник окружности равен 8. Найдите его площадь, если гипотенуза данного треугольника равна 18.