Задание 23 из ОГЭ по математике: задача 1
Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как $2$ : $3$ : $7$. Найдите радиус окружности, если меньшая из сторон равна $8$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В прямоугольном треугольнике катет и гипотенуза равны соответственно 3 и 5. Найдите высоту, проведенную к гипотенузе.
Отрезки $AC$ и $BD$ являются хордами окружности. Найдите длину хорды $AC$, если $BD = 42$, а расстояния от центра окружности до хорд $AC$ и $BD$ равны соответственно $21$ и $20$.
Точка $H$ является основанием высоты $BH$, опущенной из вершины прямого угла $B$ треугольника $ABC$ к гипотенузе $AC$. Найдите $AC$, если $AB=18$ и $AH=8$.