Задание 23 из ОГЭ по математике: задача 9

Разбор сложных заданий в тг-канале:

Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как $2$ : $3$ : $7$. Найдите радиус окружности, если меньшая из сторон равна $8$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Дан треугольник АВС, в котором прямая PQ пересекает стороны АВ и ВС в точках P и Q соответственно. Известно, что AP=3,5, AB=CQ=14, BC в 6 раза больше AP, AC=18. Найдите PQ.

В равнобедренном треугольнике $ABC$ проведена медиана $BH$ к основанию $AC$, а в треугольнике $BHC$ — медиана $HT$ к стороне $BC$. Найдите $BH$, если $AC=24$ и $HT=6{,}5$.

На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.

Дан треугольник АВС, в котором прямая PQ пересекает стороны АВ и ВС в точках P и Q соответственно. Известно, что BP=15, AB=CQ=20, BQ=10, AC=38. Найдите PQ.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!