Задание 23 из ОГЭ по математике: задача 81

Разбор сложных заданий в тг-канале:

Около четырёхугольника $BKPC$ описана окружность. Продолжения противоположных сторон $BK$ и $CP$ этого четырёхугольника пересекаются в точке $A$, лежащей вне окружности. $K$ лежит между $A$ и $B$, а $P$ — между $A$ и $C$. Найдите длину стороны $KP$, если $AP=8$ и $AB$ больше $BC$ в ${5} / {4}$ раза.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Окружность с центром на стороне $MN$ треугольника $MNP$ проходит через вершину $N$ и касается прямой $MP$ в точке $P$ . Найдите диаметр окружности, если $MP = 16$, $MN = 20$.

На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.

Биссектрисы углов $B$ и $C$ параллелограмма $ABCD$ пересекаются в точке, лежащей на стороне $AD$. Найдите $AD$, если $CD = 14,5$.

На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!