Задание 23 из ОГЭ по математике: задача 81

Разбор сложных заданий в тг-канале:

Около четырёхугольника $BKPC$ описана окружность. Продолжения противоположных сторон $BK$ и $CP$ этого четырёхугольника пересекаются в точке $A$, лежащей вне окружности. $K$ лежит между $A$ и $B$, а $P$ — между $A$ и $C$. Найдите длину стороны $KP$, если $AP=8$ и $AB$ больше $BC$ в ${5} / {4}$ раза.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.

Отрезки $AD$ и $BC$ лежат на параллельных прямых, а отрезки $AB$ и $CD$ пересекаются в точке $M$. Найдите $AB$, если $AD = 12$, $BC = 15$, $MB = 7$

На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.

Углы $A$ и $B$ треугольника $ABC$ равны соответственно $63^°$ и $87^°$. Радиус $R$ окружности, описанной около треугольника $ABC$, равен $15$. Найдите $AB$.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!