Задание 23 из ОГЭ по математике: задача 87
Одна сторона $AB$ треугольника $ABC$ касается окружности в точке $B$. Другая сторона $AC$ проходит через центр $O$ окружности и пересекает окружность в точках $D$ и $C$ так, что $D$ лежит между $A$ и $C$. Найдите длину отрезка $AD$, если $AB=15$ и диаметр окружности равен $16$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.
Треугольник вписан в окружность, при чем его вершины делят ее на три дуги, которые относятся как 10:35:15. Найдите радиус описанной около этого треугольника окружности, если меньша…
Отрезки $AB$ и $CD$ лежат на двух параллельных прямых, $AB=24$ и $CD=18$. Отрезки $AC$ и $BD$ пересекаются в точке $M$. Найдите $AC$, если $AM=36$.