Задание 23 из ОГЭ по математике: задача 79
Одна сторона $AB$ треугольника $ABC$ касается окружности в точке $B$. Другая сторона $AC$ проходит через центр $O$ окружности и пересекает окружность в точках $D$ и $C$ так, что $D$ лежит между $A$ и $C$. Найдите длину отрезка $AD$, если $AB=15$ и диаметр окружности равен $16$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.
Прямая, параллельная основаниям трапеции $MNPK$, пересекает её боковые стороны $MN$ и $PK$ в точках $A$ и $B$ соответственно. Найдите длину отрезка $AB$, если $NP = 15$, $MK = 24$, $PB$ : $BK$ = $5$ : $4$.…