Задание 23 из ОГЭ по математике: задача 79
Одна сторона $AB$ треугольника $ABC$ касается окружности в точке $B$. Другая сторона $AC$ проходит через центр $O$ окружности и пересекает окружность в точках $D$ и $C$ так, что $D$ лежит между $A$ и $C$. Найдите длину отрезка $AD$, если $AB=15$ и диаметр окружности равен $16$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Радиус вписанной в прямоугольный треугольник окружности равен 4. Найдите его площадь, если гипотенуза данного треугольника равна 10.
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.
Периметр параллелограмма $ABCD$, описанного около окружности, равен $40$. Найдите стороны этого параллелограмма.