Задание 23 из ОГЭ по математике: задача 79
Одна сторона $AB$ треугольника $ABC$ касается окружности в точке $B$. Другая сторона $AC$ проходит через центр $O$ окружности и пересекает окружность в точках $D$ и $C$ так, что $D$ лежит между $A$ и $C$. Найдите длину отрезка $AD$, если $AB=15$ и диаметр окружности равен $16$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Длины дуг, на которые вершины треугольника $ABC$ делят описанную около него окружность, относятся как $12:43:17$. Найдите радиус $R$ этой окружности, если меньшая из сторон треугольника …
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.
Биссектрисы углов $A$ и $D$ при основании равнобедренной трапеции $ABCD$ пересекаются в точке $M$, лежащей на основании $BC$. Найдите $AB$, если $BC=38$.