Задание 23 из ОГЭ по математике: задача 78

Разбор сложных заданий в тг-канале:

Угол $BCA$ прямоугольного треугольника $ABC$ с прямым углом $B$ равен $30^°$. Найдите расстояние от точки $M$, являющейся серединой гипотенузы, до катета $BC$, если гипотенуза равна $18$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Дан треугольник АВС, в котором прямая PQ пересекает стороны АВ и ВС в точках P и Q соответственно. Известно, что BP=15, AB=CQ=20, BQ=10, AC=38. Найдите PQ.

Даны две параллельные прямые. На первой прямой взят отрезок AB, на второй – CD. Точка O – точка пересечения отрезков AD и BC. Известно, что AB=18, CD=54, AD=36. Найдите AO.

Биссектрисы углов $B$ и $C$ параллелограмма $ABCD$ пересекаются в точке, лежащей на стороне $AD$. Найдите $AD$, если $CD = 45$.

В прямоугольном треугольнике катет и гипотенуза равны соответственно 8 и 17. Найдите высоту, проведенную к гипотенузе. В ответ запишите целую часть получившегося числа.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!