Задание 23 из ОГЭ по математике: задача 82

Разбор сложных заданий в тг-канале:

Окружность, вписанная в ромб $ABCD$, пересекает диагонали ромба в четырёх точках $P$, $Q$, $S$ и $T$. Наименьшее расстояние между двумя этими точками, лежащими на различных диагоналях ромба, равно $15√ 2$. Найдите расстояние $OH$ от точки пересечения $O$ диагоналей ромба до стороны $BC$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.

Найдите угол $ABO$, если его сторона $AB$ касается окружности с центром в точке $O$, а дуга $AC$, заключённая внутри этого угла, равна $120^°$

На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.

Углы $A$ и $D$ треугольника $ABD$ равны соответственно $64^°$ и $86^°$. Найдите $AD$, если радиус окружности, описанной около треугольника $ABD$, равен $5$

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!