Задание 23 из ОГЭ по математике: задача 89
Расстояния от центра $O$ окружности до хорд $AB$ и $CD$ равны соответственно $20$ и $21$. Найдите длину хорды $CD$, если длина хорды $AB$ равна $42$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Отрезки AB и CD – хорды окружности. Найдите длину хорды CD, если известно, что первая AB=48, расстояние от центра окружности до хорды AB равно 7, а до хорды CD равно 15.
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.
В трапеции $MNPK$ боковые стороны $MN$ и $PK$ равны, $PA$ — высота, проведённая к большему основанию $MK$. Найдите длину отрезка $AK$, если средняя линия $CD$ трапеции равна $12$, а меньшее основа…