Задание 23 из ОГЭ по математике: задача 89

Разбор сложных заданий в тг-канале:

Расстояния от центра $O$ окружности до хорд $AB$ и $CD$ равны соответственно $20$ и $21$. Найдите длину хорды $CD$, если длина хорды $AB$ равна $42$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Отрезки AB и CD – хорды окружности. Найдите длину хорды CD, если известно, что первая AB=48, расстояние от центра окружности до хорды AB равно 7, а до хорды CD равно 15.

На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.

В трапеции $MNPK$ боковые стороны $MN$ и $PK$ равны, $PA$ — высота, проведённая к большему основанию $MK$. Найдите длину отрезка $AK$, если средняя линия $CD$ трапеции равна $12$, а меньшее основа…

На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!