Задание 23 из ОГЭ по математике: задача 48

Разбор сложных заданий в тг-канале:

Отрезки AB и CD – хорды окружности. Найдите длину хорды CD, если известно, что первая AB=12, расстояние от центра окружности до хорды AB равно 8, а до хорды CD равно $2√21$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите угол $ABO$, если его сторона $AB$ касается окружности с центром в точке $O$, а дуга $AC$, заключённая внутри этого угла, равна $120^°$

Углы $M$ и $N$ треугольника $MPN$ равны соответственно $72^°$ и $78^°$. Найдите $MN$, если радиус окружности, описанной около треугольника $MPN$, равен $6$

Диагонали $MP$ и $NK$ трапеции $MNPK$ пересекаются в точке $A$ ($MK$ и $NP$ — основания трапеции). Площади треугольников $MAK$ и $NAP$ равны соответственно $25$ $см^2$ и $9$ $см^2$. Найдите площадь трапец…

Диагонали $AC$ и $BD$ трапеции $ABCD$ пересекаются в точке $O$ ($BC$ и $AD$ — основания трапеции). Площади треугольников $AOD$ и $BOC$ равны соответственно $36 см^2$ и $16 см^2$. Найдите площадь трапе…

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!