Задание 23 из ОГЭ по математике: задача 48
Отрезки AB и CD – хорды окружности. Найдите длину хорды CD, если известно, что первая AB=12, расстояние от центра окружности до хорды AB равно 8, а до хорды CD равно $2√21$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Точка $A$, лежащая вне окружности, соединена с концами хорды $BC$ этой окружности. Отрезки $AB$ и $AC$ пересекают окружность соответственно в точках $K$ и $P$, отличных от $B$ и $C$. $K$ лежит между…
Диагонали $MP$ и $NK$ трапеции $MNPK$ пересекаются в точке $A$ ($MK$ и $NP$ — основания трапеции). Площади треугольников $MAK$ и $NAP$ равны соответственно $25$ $см^2$ и $9$ $см^2$. Найдите площадь трапец…
Углы $M$ и $N$ треугольника $MPN$ равны соответственно $72^°$ и $78^°$. Найдите $MN$, если радиус окружности, описанной около треугольника $MPN$, равен $6$