Задание 23 из ОГЭ по математике: задача 15

Разбор сложных заданий в тг-канале:

В трапеции $MNPK$ боковые стороны $MN$ и $PK$ равны, $PA$ — высота, проведённая к большему основанию $MK$. Найдите длину отрезка $AK$, если средняя линия $CD$ трапеции равна $12$, а меньшее основание $NP$ равно $5$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Радиус вписанной в прямоугольный треугольник окружности равен 8. Найдите его площадь, если гипотенуза данного треугольника равна 18.

Даны две параллельные прямые. На первой прямой взят отрезок AB, на второй – CD. Точка O – точка пересечения отрезков AD и BC. Известно, что AB=15, CD=75, AD=30. Найдите OD.

Найдите площадь трапеции, диагонали которой равны $8$ и $15$, а средняя линия равна $8{,}5$.

На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!