Задание 23 из ОГЭ по математике: задача 51

Разбор сложных заданий в тг-канале:

Треугольник вписан в окружность, при чем его вершины делят ее на три дуги, которые относятся как 10:35:15. Найдите радиус описанной около этого треугольника окружности, если меньшая сторона треугольника равна 12.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Радиус вписанной в прямоугольный треугольник окружности равен 4. Найдите его площадь, если гипотенуза данного треугольника равна 10.

Отрезки AB и CD – хорды окружности. Найдите длину хорды CD, если известно, что первая AB=48, расстояние от центра окружности до хорды AB равно 7, а до хорды CD равно 15.

В прямоугольном треугольнике катет и гипотенуза равны соответственно 3 и 5. Найдите высоту, проведенную к гипотенузе.

Диагонали $MP$ и $NK$ трапеции $MNPK$ пересекаются в точке $A$ ($MK$ и $NP$ — основания трапеции). Площади треугольников $MAK$ и $NAP$ равны соответственно $25$ $см^2$ и $9$ $см^2$. Найдите площадь трапец…

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!