Задание 23 из ОГЭ по математике: задача 52
Треугольник вписан в окружность, при чем его вершины делят ее на три дуги, которые относятся как 10:28:22. Найдите радиус описанной около этого треугольника окружности, если меньшая сторона треугольника равна 10.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Даны две параллельные прямые. На первой прямой взят отрезок AB, на второй – CD. Точка O – точка пересечения отрезков AD и BC. Известно, что AB=15, CD=75, AD=30. Найдите OD.
Диагонали $MP$ и $NK$ трапеции $MNPK$ пересекаются в точке $A$ ($MK$ и $NP$ — основания трапеции). Площади треугольников $MAK$ и $NAP$ равны соответственно $25$ $см^2$ и $9$ $см^2$. Найдите площадь трапец…
В трапеции $ABCD$ с боковыми сторонами $AB$ и $CD$ внутренние углы $BAD$ и $CDA$ равны соответственно $45^°$ и $120^°$. Найдите $AB$, если $CD=√ 6$. Ответ дайте в градусах.