Задание 23 из ОГЭ по математике: задача 60
Треугольник вписан в окружность, при чем его вершины делят ее на три дуги, которые относятся как 10:28:22. Найдите радиус описанной около этого треугольника окружности, если меньшая сторона треугольника равна 10.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Даны две параллельные прямые. На первой прямой взят отрезок AB, на второй – CD. Точка O – точка пересечения отрезков AD и BC. Известно, что AB=15, CD=75, AD=30. Найдите OD.
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.
Прямая, параллельная основаниям трапеции $ABCD$, пересекает её боковые стороны $BC$ и $AD$ в точках $M$ и $N$ соответственно. Найдите длину отрезка $MN$, если $AB = 38$, $CD = 16$, $DN$ : $NA$ = $6$ : $5$.…