Задание 23 из ОГЭ по математике: задача 46
Отрезки AB и CD – хорды окружности. Найдите длину хорды CD, если известно, что первая AB=126, расстояние от центра окружности до хорды AB равно 16, а до хорды CD равно 25.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Отрезки $AC$ и $BD$ являются хордами окружности. Найдите длину хорды $BD$, если $AC = 24$, а расстояния от центра окружности до хорд $AC$ и $BD$ равны соответственно $35$ и $12$.
Точка $A$, лежащая вне окружности, соединена с концами хорды $BC$ этой окружности. Отрезки $AB$ и $AC$ пересекают окружность соответственно в точках $K$ и $P$, отличных от $B$ и $C$. $K$ лежит между…
Диагонали $MP$ и $NK$ трапеции $MNPK$ пересекаются в точке $A$ ($MK$ и $NP$ — основания трапеции). Площади треугольников $MAK$ и $NAP$ равны соответственно $25$ $см^2$ и $9$ $см^2$. Найдите площадь трапец…