Задание 23 из ОГЭ по математике: задача 45
Отрезки AB и CD – хорды окружности. Найдите длину хорды CD, если известно, что первая AB=42, расстояние от центра окружности до хорды AB равно 20, а до хорды CD равно $√517$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Медиана $BD$ и биссектриса $CK$ треугольника $ABC$ пересекаются в точке $M$, длина стороны $AC$ относится к длине стороны $BC$ как $3 : 4$. Найдите отношение площади треугольника $CMD$ к площади т…
Диагонали $AC$ и $BD$ трапеции $ABCD$ пересекаются в точке $O$ ($BC$ и $AD$ — основания трапеции). Площади треугольников $AOD$ и $BOC$ равны соответственно $36 см^2$ и $16 см^2$. Найдите площадь трапе…
В трапеции ABCD проведены биссектрисы углов A и B при боковой стороне AB, которые пересекаются в точке M. Найдите AB, если AM=5, BM=12.