Задание 23 из ОГЭ по математике: задача 47
В трапеции ABCD проведены биссектрисы углов A и B при боковой стороне AB, которые пересекаются в точке M. Найдите AB, если AM=5, BM=12.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Длины дуг, на которые вершины треугольника $ABC$ делят описанную около него окружность, относятся как $4:9:11$. Найдите меньшую сторону, если радиус $R$ этой окружности равен $14$.
Найдите угол $ABO$, если его сторона $AB$ касается окружности с центром в точке $O$, а дуга $AC$, заключённая внутри этого угла, равна $120^°$
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.