Задание 23 из ОГЭ по математике: задача 40
В трапеции АВСD прямая, параллельная основаниям, пересекает боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если известно, что AD=168, BC=150, AE:BE=5:7.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Дан треугольник АВС, в котором прямая PQ пересекает стороны АВ и ВС в точках P и Q соответственно. Известно, что AP=3,5, AB=CQ=14, BC в 6 раза больше AP, AC=18. Найдите PQ.
Расстояние $OH$ от точки пересечения $O$ диагоналей ромба $ABCD$ до стороны $BC$ равно $14√ 2$. Найдите наименьшее расстояние между двумя точками, лежащими на различных диагоналях ромба, в к…
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.