Задание 23 из ОГЭ по математике: задача 104

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 3 мин. 25 сек.

Биссектрисы углов $K$ и $L$ параллелограмма $KLMN$ пересекаются в точке $P$. Найдите площадь параллелограмма, если $LM=20$, а расстояние от точки $P$ до стороны $KL$ равно $7$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.

В трапеции $ABCD$ боковые стороны $AD$ и $BC$ равны, $BK$ — высота, проведённая к большему основанию $CD$. Найдите длину отрезка $CK$, если средняя линия $MN$ трапеции равна $15$, а меньшее основа…

На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.

Отрезки $AD$ и $BC$ лежат на параллельных прямых, а отрезки $AB$ и $CD$ пересекаются в точке $M$. Найдите $AB$, если $AD = 12$, $BC = 15$, $MB = 7$

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!