Задание 23 из ОГЭ по математике: задача 104
Биссектрисы углов $K$ и $L$ параллелограмма $KLMN$ пересекаются в точке $P$. Найдите площадь параллелограмма, если $LM=20$, а расстояние от точки $P$ до стороны $KL$ равно $7$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.
Биссектрисы углов $A$ и $B$ параллелограмма $ABCD$ пересекаются в точке $M$. Найдите площадь параллелограмма, если $BC=15$, а расстояние от точки $M$ до стороны $AB$ равно $6$.
В трапеции $MNPK$ боковые стороны $MN$ и $PK$ равны, $PA$ — высота, проведённая к большему основанию $MK$. Найдите длину отрезка $AK$, если средняя линия $CD$ трапеции равна $12$, а меньшее основа…