Задание 23 из ОГЭ по математике: задача 100

Разбор сложных заданий в тг-канале:

Отрезки $AB$ и $CD$ лежат на двух параллельных прямых, $AB=15$ и $CD=25$. Отрезки $AC$ и $BD$ пересекаются в точке $M$. Найдите $MC$, если $AC=120$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Дан треугольник АВС, в котором прямая PQ пересекает стороны АВ и ВС в точках P и Q соответственно. Известно, что AP=3,5, AB=CQ=14, BC в 6 раза больше AP, AC=18. Найдите PQ.

Точка $K$ является основанием высоты, проведённой из вершины прямого угла $C$ треугольника $ABC$ к гипотенузе $AB$. Найдите $AC$, если $AK = 3$, $AB = 12$.

Средняя линия трапеции, в которую вписана окружность, равна $10$. Найдите сумму боковых сторон трапеции.

Дан треугольник АВС, в котором прямая PQ пересекает стороны АВ и ВС в точках P и Q соответственно. Известно, что BP=3, AB=20, CQ=4, BC=10, AC=24. Найдите PQ.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!