Задание 23 из ОГЭ по математике: задача 100

Разбор сложных заданий в тг-канале:

Отрезки $AB$ и $CD$ лежат на двух параллельных прямых, $AB=15$ и $CD=25$. Отрезки $AC$ и $BD$ пересекаются в точке $M$. Найдите $MC$, если $AC=120$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В трапеции $ABCD$ c основаниями $BC=20$ и $AD=60$ проведена прямая, параллельная основаниям трапеции и пересекающая боковые рёбра $AB$ и $CD$ соответственно в точках $E$ и $F$. Найдите $EF$, если …

Дан треугольник АВС, в котором прямая PQ пересекает стороны АВ и ВС в точках P и Q соответственно. Известно, что BP=3, AB=20, CQ=4, BC=10, AC=24. Найдите PQ.

Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как $1$ : $2$ : $3$. Найдите радиус окружности, если меньшая из сторон равна $14$.

Дан треугольник АВС, в котором прямая PQ пересекает стороны АВ и ВС в точках P и Q соответственно. Известно, что AP=3,5, AB=CQ=14, BC в 6 раза больше AP, AC=18. Найдите PQ.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!