Задание 23 из ОГЭ по математике: задача 141

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 3 мин. 31 сек.

В прямоугольном треугольнике $ABC$ с катетами $AC=18$ и $CB=24$ провели отрезок, соединяющий середины сторон $AB$ и $BC$. На этом отрезке, как на диаметре, построена окружность. Найдите длину отрезка гипотенузы $AB$, который лежит внутри этой окружности.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Сумма боковых сторон трапеции, в которую вписана окружность, равна $18$. Найдите среднюю линию трапеции.

На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.

На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.

Прямая, параллельная стороне $BC$ треугольника $ABC$, пересекает стороны $AB$ и $AC$ в точках $E$ и $F$ соответственно. Найдите $BC$, если $AE : EB = 2 : 3$ и $EF = 15$.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!