Задание 23 из ОГЭ по математике: задача 133
В прямоугольном треугольнике $ABC$ с катетами $AC=18$ и $CB=24$ провели отрезок, соединяющий середины сторон $AB$ и $BC$. На этом отрезке, как на диаметре, построена окружность. Найдите длину отрезка гипотенузы $AB$, который лежит внутри этой окружности.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Биссектрисы углов при основании $AC$ равнобедренного треугольника $ABC$ пересекаются в точке $M$. Отрезок $EF$, концы которого $E$ и $F$ лежат соответственно на сторонах $AB$ и $BC$, проходит чере…
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.
Биссектрисы углов $B$ и $C$ параллелограмма $ABCD$ пересекаются в точке, лежащей на стороне $AD$. Найдите $AD$, если $CD = 14,5$.