Задание 23 из ОГЭ по математике: задача 133
В прямоугольном треугольнике $ABC$ с катетами $AC=18$ и $CB=24$ провели отрезок, соединяющий середины сторон $AB$ и $BC$. На этом отрезке, как на диаметре, построена окружность. Найдите длину отрезка гипотенузы $AB$, который лежит внутри этой окружности.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Отрезки AB и CD – хорды окружности. Найдите длину хорды CD, если известно, что первая AB=12, расстояние от центра окружности до хорды AB равно 8, а до хорды CD равно $2√21$.
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.
В параллелограмм вписана окружность. Найдите периметр параллелограмма, если одна из его сторон равна $7$.