Задание 23 из ОГЭ по математике: задача 109
Треугольник со сторонами $AB=15$ и $AC=17$ вписан в окружность. Найдите радиус этой окружности, если косинус угла между этими сторонами равен ${45} / {51}$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В равнобедренном треугольнике $ABC$ проведена медиана $BH$ к основанию $AC$, а в треугольнике $BHC$ — медиана $HT$ к стороне $BC$. Найдите $HT$, если $AC=42$ и $BH=20$.
Даны две параллельные прямые. На первой прямой взят отрезок AB, на второй – CD. Точка O – точка пересечения отрезков AD и BC. Известно, что AB=10, CD=20, AD=30. Найдите OD.
В прямоугольном треугольнике катет и гипотенуза равны соответственно 8 и 17. Найдите высоту, проведенную к гипотенузе. В ответ запишите целую часть получившегося числа.