Задание 23 из ОГЭ по математике: задача 109

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 2 мин. 22 сек.

Треугольник со сторонами $AB=15$ и $AC=17$ вписан в окружность. Найдите радиус этой окружности, если косинус угла между этими сторонами равен ${45} / {51}$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В равнобедренном треугольнике $ABC$ проведена медиана $BH$ к основанию $AC$, а в треугольнике $BHC$ — медиана $HT$ к стороне $BC$. Найдите $HT$, если $AC=42$ и $BH=20$.

Даны две параллельные прямые. На первой прямой взят отрезок AB, на второй – CD. Точка O – точка пересечения отрезков AD и BC. Известно, что AB=10, CD=20, AD=30. Найдите OD.

В прямоугольном треугольнике катет и гипотенуза равны соответственно 8 и 17. Найдите высоту, проведенную к гипотенузе. В ответ запишите целую часть получившегося числа.

Одна сторона $AB$ треугольника $ABC$ касается окружности в точке $B$. Другая сторона $AC$ проходит через центр $O$ окружности и пересекает окружность в точках $D$ и $C$ так, что $D$ лежит между $A$ …

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!