Задание 23 из ОГЭ по математике: задача 139
Вычислите периметр трапеции, боковые стороны которой $40$ и $25$, высота $24$, одно из оснований равно $10$, и один из углов, прилежащих к этому основанию острый, а другой тупой.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В трапеции $ABCD$ с боковыми сторонами $AB$ и $CD$ внутренние углы $BAD$ и $CDA$ равны соответственно $45^°$ и $120^°$. Найдите $AB$, если $CD=√ 6$. Ответ дайте в градусах.
Радиус вписанной в прямоугольный треугольник окружности равен 1. Найдите его площадь, если гипотенуза данного треугольника равна 9.
Катеты прямоугольного треугольника равны 10 и 24. Найдите высоту, проведённую к гипотенузе. Результат округлите до целого числа