Задание 23 из ОГЭ по математике: задача 139

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 4 мин. 19 сек.

Вычислите периметр трапеции, боковые стороны которой $40$ и $25$, высота $24$, одно из оснований равно $10$, и один из углов, прилежащих к этому основанию острый, а другой тупой.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В трапеции $ABCD$ с боковыми сторонами $AB$ и $CD$ внутренние углы $BAD$ и $CDA$ равны соответственно $45^°$ и $120^°$. Найдите $AB$, если $CD=√ 6$. Ответ дайте в градусах.

Радиус вписанной в прямоугольный треугольник окружности равен 1. Найдите его площадь, если гипотенуза данного треугольника равна 9.

Катеты прямоугольного треугольника равны 10 и 24. Найдите высоту, проведённую к гипотенузе. Результат округлите до целого числа

Треугольник вписан в окружность, при чем его вершины делят ее на три дуги, которые относятся как 32:20:68. Найдите радиус описанной около этого треугольника окружности, если меньша…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!