Задание 23 из ОГЭ по математике: задача 147
$ABCD$ — прямоугольная трапеция с прямым углом $A$ и меньшим основанием $BC=1$. Окружность с центром в точке $O$ касается прямой $BC$ в точке $C$ и проходит через точки $A$ и $D$, $∠ CDA=60^°$. Найдите длину стороны $CD$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно $13$, а одна из диагоналей ромба равна $52$. Найдите углы ромба.
Так как задание второй части, тут нужно на…
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.
В треугольник $ABC$ вписана окружность, которая касается сторон треугольника в точках $K$, $M$ и $P$. Найдите углы треугольника $ABC$, если углы $M$, $P$ и $K$ треугольника $MKP$ равны соответственн…