Задание 23 из ОГЭ по математике: задача 112
Периметр параллелограмма равен $90$, а острый угол — $60^{°}$. Диагональ параллелограмма делит его тупой угол на части в отношении $1:3$. Найдите большую сторону параллелограмма.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Прямая $AE$, перпендикулярная медиане $BK$ треугольника $ABC$, делит её пополам. Найдите сторону $AC$, если сторона $AB$ равна $6$.
В треугольник $ABC$ вписана окружность, которая касается сторон треугольника в точках $K$, $M$ и $P$. Найдите углы треугольника $MKP$, если углы $A$, $B$ и $C$ треугольника $ABC$ равны соответственн…
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.