Задание 23 из ОГЭ по математике: задача 112
Периметр параллелограмма равен $90$, а острый угол — $60^{°}$. Диагональ параллелограмма делит его тупой угол на части в отношении $1:3$. Найдите большую сторону параллелограмма.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Расстояние от точки $O$ пересечения диагоналей $AC$ и $BD$ ромба $ABCD$ до стороны $CD$ равно $11$. Найдите углы ромба, если одна из его диагоналей равна $44$. Ответ дайте в градусах.
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.
На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.