Задание 23 из ОГЭ по математике: задача 120
Периметр параллелограмма равен $90$, а острый угол — $60^{°}$. Диагональ параллелограмма делит его тупой угол на части в отношении $1:3$. Найдите большую сторону параллелограмма.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Расстояние от точки $O$, являющейся серединой основания $AC$ равнобедренного треугольника $ABC$, до стороны $BC$ равно $14$. Найдите углы треугольника, если его основание равно $56$. Ответ дай…
В прямоугольном треугольнике катет и гипотенуза равны соответственно 8 и 17. Найдите высоту, проведенную к гипотенузе. В ответ запишите целую часть получившегося числа.
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.