Задание 23 из ОГЭ по математике: задача 37
Найдите угол $ACO$, если его сторона $AC$ касается окружности с центром в точке $O$, а дуга $AB$, заключённая внутри этого угла, равна $150^°$ (см. рис.).
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Точка $M$ является основанием высоты, проведённой из вершины прямого угла $C$ треугольника $ABC$ к гипотенузе $AB$. Найдите $AC$, если $AM = 4$, $AB = 16$.
Одна сторона $AB$ треугольника $ABC$ касается окружности в точке $B$. Другая сторона $AC$ проходит через центр $O$ окружности и пересекает окружность в точках $D$ и $C$ так, что $D$ лежит между $A$ …