Задание 23 из ОГЭ по математике: задача 111
В параллелограмме $ABCD$ биссектриса тупого угла $B$ пересекает сторону $AD$ в точке $F$. Найдите периметр параллелограмма, если $AB=12$ и $AF:FD=4:3$.{
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Расстояние $OH$ от точки пересечения $O$ диагоналей ромба $ABCD$ до стороны $BC$ равно $14√ 2$. Найдите наименьшее расстояние между двумя точками, лежащими на различных диагоналях ромба, в к…
Прямая, параллельная основаниям трапеции $MNPK$, пересекает её боковые стороны $MN$ и $PK$ в точках $A$ и $B$ соответственно. Найдите длину отрезка $AB$, если $NP = 15$, $MK = 24$, $PB$ : $BK$ = $5$ : $4$.…
Даны две параллельные прямые. На первой прямой взят отрезок AB, на второй – CD. Точка O – точка пересечения отрезков AD и BC. Известно, что AB=10, CD=20, AD=30. Найдите OD.