Задание 23 из ОГЭ по математике: задача 111

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 1 мин. 7 сек.

В параллелограмме $ABCD$ биссектриса тупого угла $B$ пересекает сторону $AD$ в точке $F$. Найдите периметр параллелограмма, если $AB=12$ и $AF:FD=4:3$.{

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Хорды окружности $AB$ и $CD$ равны соответственно $30$ и $16$. Расстояние от центра окружности $O$ до хорды $CD$ равно $15$. Найдите расстояние от центра окружности $O$ до хорды $AB$.

Даны две параллельные прямые. На первой прямой взят отрезок AB, на второй – CD. Точка O – точка пересечения отрезков AD и BC. Известно, что AB=10, CD=20, AD=30. Найдите OD.

Медиана $BD$ и биссектриса $CK$ треугольника $ABC$ пересекаются в точке $M$, длина стороны $AC$ относится к длине стороны $BC$ как $3 : 4$. Найдите отношение площади треугольника $CMD$ к площади т…

В параллелограмм вписана окружность. Найдите периметр параллелограмма, если одна из его сторон равна $7$.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!