Задание 23 из ОГЭ по математике: задача 111
В параллелограмме $ABCD$ биссектриса тупого угла $B$ пересекает сторону $AD$ в точке $F$. Найдите периметр параллелограмма, если $AB=12$ и $AF:FD=4:3$.{
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Даны две параллельные прямые. На первой прямой взят отрезок AB, на второй – CD. Точка O – точка пересечения отрезков AD и BC. Известно, что AB=10, CD=20, AD=30. Найдите OD.
Хорды окружности $AB$ и $CD$ равны соответственно $30$ и $16$. Расстояние от центра окружности $O$ до хорды $CD$ равно $15$. Найдите расстояние от центра окружности $O$ до хорды $AB$.
В трапеции $MNPK$ боковые стороны $MN$ и $PK$ равны, $PA$ — высота, проведённая к большему основанию $MK$. Найдите длину отрезка $AK$, если средняя линия $CD$ трапеции равна $12$, а меньшее основа…