Задание 23 из ОГЭ по математике: задача 121

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 1 мин. 0 сек.

В прямоугольном треугольнике $ABC$ $(∠=90^{°})$ проведена медиана $CD$, длина которой $2{,}5$ см. Найдите периметр треугольника, если один из катетов на $1$ см меньше гипотенузы.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В прямоугольном треугольнике катет и гипотенуза равны соответственно 3 и 5. Найдите высоту, проведенную к гипотенузе.

На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.

На сторонах угла $ABC$ и на его биссектрисе отложены равные отрезки $AB$, $BC$ и $BK$ (см. рис.). Величина угла $AKC$ равна $140^°$. Определите величину угла $ABC$. Ответ дайте в градусах.

Биссектриса угла $C$ параллелограмма $ABCD$ пересекает его сторону $AD$ в точке $F$. Найдите площадь параллелограмма $ABCD$, если $FD = 9$, $AF = 2$, а $∠ADC = 150^°$

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!