Задание 23 из ОГЭ по математике: задача 121
В прямоугольном треугольнике $ABC$ $(∠=90^{°})$ проведена медиана $CD$, длина которой $2{,}5$ см. Найдите периметр треугольника, если один из катетов на $1$ см меньше гипотенузы.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Окружность с центром на стороне $AC$ треугольника $ABC$ проходит через вершину $A$ и касается прямой $BC$ в точке $B$. Найдите диаметр окружности, если $BC = 18$, $AC = 24$.
Точка $M$ является основанием высоты, проведённой из вершины прямого угла $C$ треугольника $ABC$ к гипотенузе $AB$. Найдите $AC$, если $AM = 4$, $AB = 16$.
На сторонах угла $MNP$ и на его биссектрисе отложены равные отрезки $MN$, $NP$ и $NA$ (см. рис.). Величина угла $MAP$ равна $142^°$. Определите величину угла $MNP$ . Ответ дайте в градусах.