Задание 22 из ОГЭ по математике: задача 100
Постройте график функции $y=|x^2-x-6|$. Какое наибольшее число общих точек график данной функции может иметь с прямой, параллельной оси абсцисс?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(8x+10y-12)^2+(8x-5y-42)^2$? В ответ запишите значение переменной $x$.
Постройте график функции
$y=\{{\table {3x, \text ' при 'x<1}; {-6x+9, \text ' при ' 1≤x<2}; {x-5,\text ' при ' x≥2};}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно 2 общие точки.В ответ запишите наибольшее такое значение.
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|-x+3y-6|+|x-y+2|$? В ответ запишите значение переменной $x$.