Задание 22 из ОГЭ по математике: задача 100
Постройте график функции $y=|x^2-x-6|$. Какое наибольшее число общих точек график данной функции может иметь с прямой, параллельной оси абсцисс?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(4x+2y-1)^2+(4x-12y-36)^2$? В ответ запишите значение переменной $x$.
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|-x+3y-6|+|x-y+2|$? В ответ запишите значение переменной $x$.
Постройте график функции ${(√{x^2-2x-8})^2}/{x-4}$ и определите, при каких значениях $a$ прямая $y=a$ не имеет с графиком данной функции общих точек.
1. $a=0$
2. $a=6$
3. $a∈(0; 6]$
4. $a∈(0; +∞)$
…