Задание 22 из ОГЭ по математике: задача 99
Постройте график функции $y=x^2-4|x|+1$. Какое наибольшее число общих точек график данной функции может иметь с прямой, параллельной оси абсцисс?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Постройте график функции $y={x^4-25x^2+144} / {(x-4)(x+3)}$ и определите, при каких значениях параметра $a$ прямая $y=a$ имеет с графиком ровно одну общую точку.
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|-x+3y-6|+|x-y+2|$? В ответ запишите значение переменной $x$.
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(8x+10y-12)^2+(8x-5y-42)^2$? В ответ запишите значение переменной $x$.