Задание 22 из ОГЭ по математике: задача 99
Постройте график функции $y=x^2-4|x|+1$. Какое наибольшее число общих точек график данной функции может иметь с прямой, параллельной оси абсцисс?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Постройте график функции $y=\{{\table {3x, \text ' при 'x<1}; {-6x+9, \text ' при ' 1≤x<2}; {x-5,\text ' при ' x≥2};}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно 2 общие точки.
В ответ запишите наибольшее такое значение.
Первая прямая проходит через точки с координатами $(1; 4)$ и $(-1; -6)$, вторая - через точки $(4; 1)$ и $(8; -3)$. Найдите координату точки пересечения данных прямых. В ответ запишите зна…
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(8x+10y-12)^2+(8x-5y-42)^2$? В ответ запишите значение переменной $x$.