Задание 22 из ОГЭ по математике: задача 98
Постройте график функции $y=x^2-8|x|+7$. Какое наибольшее число общих точек график данной функции может иметь с прямой, параллельной оси абсцисс?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Постройте график функции $y=|x|(x-4)-2x$ и определите, при каких значениях $m$ прямая $y=m$ имеет с графиком ровно две общие точки.
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|-x+3y-6|+|x-y+2|$? В ответ запишите значение переменной $x$.
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(8x+10y-12)^2+(8x-5y-42)^2$? В ответ запишите значение переменной $x$.