Задание 22 из ОГЭ по математике: задача 98

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 2 мин. 16 сек.

Постройте график функции $y=x^2-8|x|+7$. Какое наибольшее число общих точек график данной функции может иметь с прямой, параллельной оси абсцисс?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(8x+10y-12)^2+(8x-5y-42)^2$? В ответ запишите значение переменной $x$.

Первая прямая проходит через точки с координатами $(5; 2)$ и $(8; 5)$, вторая - через точки $(-3; -9)$ и $(0; 3)$. Найдите координату точки пересечения данных прямых. В ответ запишите знач…

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|-x+3y-6|+|x-y+2|$? В ответ запишите значение переменной $x$.

Постройте график функции ${(√{x^2-x-6})^2}/{x+2}$ и определите, при каких значениях $m$ прямая $y=m$ не имеет с графиком данной функции общих точек.
1. $m∈[-5; 0)$
2. $m=-5$
3. $m=0$
4. $m∈(0; +∞)$

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!