Задание 22 из ОГЭ по математике: задача 98
Постройте график функции $y=x^2-8|x|+7$. Какое наибольшее число общих точек график данной функции может иметь с прямой, параллельной оси абсцисс?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Постройте график функции $y=\{{\table {-x+5, \text ' при 'x<2}; {2x-1, \text ' при ' 2≤x<4}; {-x+11,\text ' при ' x≥4};}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно 2 общие точки.
В ответ запишите наибольшее такое значение.
Постройте график функции $y=\{{\table {x+3, \text ' при 'x<-2,5}; {-x-2, \text ' при ' -2,5≤x<1,5}; {x-5,\text ' при ' x≥1,5};}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно 2 общие точки.
В ответ запишите наибольшее такое значение.
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(8x+10y-12)^2+(8x-5y-42)^2$? В ответ запишите значение переменной $x$.