Задание 22 из ОГЭ по математике: задача 98
Постройте график функции $y=x^2-8|x|+7$. Какое наибольшее число общих точек график данной функции может иметь с прямой, параллельной оси абсцисс?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|-x+3y-6|+|x-y+2|$? В ответ запишите значение переменной $x$.
Постройте график функции $y={x^5+x^4}/{x^3+x^2}-3$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно одну общую точку.
При каких значениях $a$ неравенство $x^2+(a+1)x+3/4a+7/4≤0$ не имеет решений?
1. $a∈(-2; 3)$
2. $a∈(0; 3)$
3. $a∈(3; 5)$
4. Решений нет