Задание 22 из ОГЭ по математике: задача 101
Постройте график функции $y={(x+2)(x^2+5x+4)} / {x+4}$ и определите, при каких значениях параметра $m$ прямая $y=m$ имеет с графиком ровно одну общую точку.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Постройте график функции $y=1-{2x+1} / {2x^2+x}$ и определите, при каких значениях параметра $n$ прямая $y=n$ не имеет с графиком ни одной общей точки.
Известно, что квадратичная функция проходит через точки $(0; 11)$, $(-4; 3)$ и $(1; 23)$. Найдите координату вершины $x_в$ данной параболы.
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(8x+10y-12)^2+(8x-5y-42)^2$? В ответ запишите значение переменной $x$.