Задание 12 из ЕГЭ по математике (база): задача 277

Разбор сложных заданий в тг-канале:

В параллелограмме $ABCD$ биссектрисы углов $B$ и $C$ пересекают сторону $AD$ в точках $L$ и $K$ соответственно. Найдите площадь параллелограмма $ABCD$, если известно, что $BL=6$, $CK=8$ и $AB:AD\!=\!1:3$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольнике ABC AC = 15, BF - медиана, BL - высота, BF = BC. Найдите длину отрезка AL.

Основания равнобедренной трапеции 12 и 28, боковая сторона равна 17. Найдите высоту трапеции.

В окружности по разные стороны от диаметра $AC$ взяты точки $B$ и $D$. Известно, что $∠BAC = 41°$. Найдите угол $ADB$. Ответ дайте в градусах.

В треугольнике ABC известно, что AB = BC, медиана BL равна $18$. Площадь треугольника ABC равна $108√7$. Найдите длину стороны BC.