Задание 12 из ЕГЭ по математике (база): задача 275
В параллелограмме $ABCD$ биссектрисы углов $B$ и $C$ пересекаются в точке $L$, лежащей на стороне $AD$. Найдите площадь параллелограмма $ABCD$, если известно, что $BL=6$, а периметр $▵ CDL$ равен $18$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Один из внешних углов треугольника равен $80^°$. Углы, не смежные с данным внешним углом, относятся как $2:3$ (см. рис.). Найдите наибольший из них. Ответ дайте в градусах.
В равнобедренном треугольнике $LNK$ боковые стороны $LN = NK = 5$, основание $LK = 6, NM$ - биссектриса угла $LNK$. Найдите $sin∠NLM$.