Задание 12 из ЕГЭ по математике (база): задача 275

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 1 мин. 11 сек.

В параллелограмме $ABCD$ биссектрисы углов $B$ и $C$ пересекаются в точке $L$, лежащей на стороне $AD$. Найдите периметр параллелограмма $ABCD$, если известно, что $CL=12$, а площадь $▵ ABL$ равна 15.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В выпуклом четырёхугольнике $LMNK$ известно, что $LM = MN, LK = KN, ∠M = 64°, ∠K = 122°$. Найдите угол $N$. Ответ дайте в градусах.

В треугольнике ABC AC = 17, BM медиана, BD высота, AB = BM. Найдите длину отрезка CD.

В треугольнике ABC AC = 15, BF - медиана, BL - высота, BF = BC. Найдите длину отрезка AL.

В треугольнике ABC известно, что AB = BC, медиана BL равна $18$. Площадь треугольника ABC равна $108√7$. Найдите длину стороны BC.